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Abstract. Using a method of dimensional reduction from an on-shell multiplet in ten 
space-time dimensions we give the supersymmetry transformation laws of a general 
irreducible representation of N = 4  SUSY with central charges present. With more t h a  
one central charge an extra condition is used to give a finite number of components and 
we give the field transformations and Lagrangian for the case of two central charges. 

1. Introduction 

One of the basic problems facing construction of extended supergravities and N = 4 
super Yang-Mills theory is the existence of the N = 3  barrier (Rivelles and Taylor 
1981, 1983, Taylor 1982a), where N denotes the number of supersymmetry (SUSY) 
generators in the related global extended SUSY algebra. Out of the the possible three 
ways to penetrate this barrier (Taylor 1983) only one, that of central charges, seems 
most likely to allow construction of off-shell extended SUSY theories in terms of fully 
extended superfields. However, it is necessary that these central charges are degener- 
ate, at least on some multiplets, this degeneracy (Sohnius 1978, Taylor 1980) corres- 
ponding to masslessness in higher dimensions. In this case it is well known that the 
maximal spin in such representations is half that for massive representations, and this 
spin reduction is precisely that required to avoid the N = 3 barrier. 

Detailed analysis of N = 4 supergravity (Taylor 1982b) shows that SUSY representa- 
tions are required which have at least two central charges. The construction of irreps 
of N = 4 SUSY with one spin-reducing central charge has been achieved using 
dimensional reduction by Legendre transformation (Sohnius et a1 1981). The same 
method does not seem to work for more than one central charge, since further 
dimensional reduction beyond one step removes the extra fields introduced at the 
first step. In order to proceed in the construction of N = 4 supergravity (and the 
situation for supergravities of higher N is expected to be similar) requires the develop- 
ment of irreps of N-SUSY with at least two central charges without using Legendre 
transformation techniques. 

We present here such irreps, obtained directly by techniques using explicitly the 
on-shell component field transformation laws in ten dimensions. We introduce the 
further components corresponding to those arising from central charge transformations 
as derivatives of the usual physical fields, but along the direction of the higher 
dimensions. These derivatives are evaluated at an arbitrary point (which we can take 
to be zero), as corresponds to the general theory of integration over central charge 
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dimensions presented elsewhere (Restuccia and Taylor 1983a, Gorse er a1 1983). 
In this approach we have shown that space-time R4 is to be regarded as the vertex 
of a cone r in a higher-dimensional space-time involving R4 and the central charge 
dimensions, Actions may be constructed from which the field equations may be 
derived in terms of the fields and their derivatives along the central charge dimensions, 
evaluated at the vertex of I'. 

We proceed by considering the ten-dimensional theory (Gliozzi et a1 1977, Brink 
er a1 1977, Scherk 1979) and the general method of reduction to four dimensions. 
In 0 3 we obtain the transformation laws for the case of one, two and more than two 
central charges respectively. In 0 4 we describe these transformation laws in superfield 
form and conclude with a discussion of the still unanswered questions raised by our 
results. 

2. Reduction from ten dimensions 

In ten dimensions we can take a purely imaginary Majorana representation of the 
Clifford algebra (Scherk 1979): 

{rM, rN} = 2qMN (2.1) 

where qoo = 1, qrr = -1, I = 1, . . .9.  

algebra : 
We introduce six real antisymmetric 4 x 4 matrices satisfying the SU(2) x SU(2) 

We can then take our representation to be 

0 ai 
r3+i = i1 op3 ( cr o)  

This gives, for a Majorana-Weyl spinor in ten dimensions, 

where k = 1 , 2 , 3 , 4  and (I.& are four Majorana (real) spinors (i.e. 4 =(I.* and r"@ = 4). 
We can relabel the ten-vector AM by 

AM =(Afi ,Bi,B:)  i , j  = 1 , 2 , 3  (2.5) 

and the ten-derivative DM by 

DM = (a,, ai 9 8:) (2.6) 

where we take ai, a: to be the (central charge) derivatives in the six extra dimensions. 
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If we now take an on-shell representation in ten dimensions we find, on reducing 
to four, that all boson fields satisfy 

0104 =(O-a$aj2)4 = o  (2.7) 

@A = O  or (614+iaiai+iy p a i ) k l ~ l = ~ .  

and all fermion fields satisfy the spin-reducing equation 

(2.8) 

Reducing the ten-dimensional supersymmetry transformation laws will give us, in 
general, the transformation laws for a four-dimensional representation with central 
charges present. In 9: 3 we show how this works in the simplest case. 

5 j r  

3. Central charge multiplets 

3.1. The reduced multiplet 

The simplest on-shell representation in 10 dimensions is well known (Gliozzi et a1 
1977, Brink et a1 1977, Scherk 1979) and is given by a purely transverse real vector 
boson and a Majorana-Weyl spinor with supersymmetry transformations 

SAM = iXMA SA =a& (3.1) 

with AM satisfying 

D ~ A ,  = 0. (3.2) 
By using the blueprint for reduction given we get the four-dimensional versions 

of (3.1) and (3.2): 

SA, = 2i ly ,h  6Bi = 2.Fa"h SB: = 2 f Y 5 p j ~  
Shk = ((d-iaiai +iy 5 p i r  a , ) ( ~ + i a " ~ ~ , + i y ~ p ~ ' ~ : ) ~ ) ~  

YA,  - aiBi - 8; Bj = 0. 

(3.3) 

with A, unconstrained and satisfying 

(3.4) 

We also have central charge derivatives of these fields which we can treat as 
independent and we can give the supersymmetry transformations for all these by 
suitable differentiation of equations (3.3) and using equations (2.7) and (2.8). 

For just one non-vanishing central charge it is clear that this leads to a simple 
doubling of Bose states since 8' =U from (2.7) and we get the usual single central 
charge multiplet. For more than one central charge non-vanishing, equations (2.7) 
and (2.8) are not strong enough to prevent an infinite number of states and we need 
to apply an extra condition in this case. 

3.2. Two central charges 

If we take, as non-vanishing, the derivatives along a' and a' we get, by using (2.7), 
as independent fields, for example: 
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Clearly there is an infinite number of fields, of both physical and auxiliary 

We can constrain the multiplet to give a finite number of components by taking 
dimensions. 

the additional conditions 

a: = afo a:=a:O (3.5) 
on fields in the multiplet. Then for equation (2.7) to be satisfied we have 

(3.6) 
and we get as independent Bose fields A,, &A,, a2A, and ala2A,/0 only so each 
central charge effectively doubles the number of components. 

2 2  a l  + a 2  = 1 

Writing 

(3.7) 
SO 4 i m  = (a  4a ) k m  and a k m 4 k m  = a k m 4 k m  = 0, i.e. 4 k m  =4kmTT, we get, using (3.41, 

SAk = (d-ia'a, - ia2a2) (X+da3H/O+2i4TT)~~  (3.8) 

1 3  
4 k m  = T(a B3 + ip * B ' ) k m  

1 1  1 2 

where 

This gives 

If we now take 

a l A k  =iaIdalxlk a2hk = ia2da2xZk 
we get 

(3.11) 
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1 3 8X i + k  = iff LmK1 E y - a  ia'yi E c k  - a2ff ;m a'y2 E + m  + iff km a'ff kn 4 1 E 1, - a  I ff k m H i  E + m  

1 *  m 3 + a2H2 E + k  -2ff kmHlmn E-n - 2iai$41kmE - - 2ia2ff k m  8 4 2 m n E  

2 3 3 
8X2+k  = iff:m&2E y - a 2 3 x 1 E + k  +ala:, dY2E+, +iff  km dff m m 4 2 E n  -azffkmHiE+m 

2 *  3 
- a  H2 E + k  -2ff k m H 2 m n E  +n - 2iaz d41km& + 2ia 1 ff km 3 4 2 m n E  

with invariant Lagrangian 

L=:(V1,OV'; + V2,OV; -A1,A1,-A~,,A2,)--:(41041++22#2-H: -Hi) 

- ; ( 4 l k m  0 4 T k m  +42km W , * , m  - H l k m H ? k m  - H 2 k m H t k m )  

+ i,f 1 bx 1 + $2 3x2. (3.15) 

The commutator of two supersymmetry transformations can then be shown to be 

(3.16) 

The Lagrangian (3.15) is also invariant under the central charge transformations 

8, =wla l+w2a2 (3.17) 

[a1, s,] = ~ ~ E ~ S E ~ - - ~ ( E ~ ( Y  1 ~ 2 d l  + ~ ~ t u ~ ~ ~ a ~ )  

i.e. a space-time translation and two central charge transformations. 

which gives, for example, 

&Vl, =a1w1AlW +a2w2A2, 

&A2, = alwlUV2, +a2w2UV1, 

& X l k  = -ialwla'a(alx1 +a2X2)k +ia2w2a2b(a2xl - a t x Z ) k  

8 d 2 k  = - i a l w l a  'd(azx1- a 1 ~ 2 ) k  - ia2w2a2d(a1x1 + a2~2)k .  

It is clear from (3.14) and (3.18) that, except when a l  = 0 or a 2  = 0, the equations 
cannot be decoupled and we do indeed have a two central charge multiplet. When 
a l  = 0 or a 2  = 0 we get the single central charge case as expected. 

6,Al. = alwlOV1, + a 2 ~ 2 0 V 2 ,  

8, V2, = alolA2,  +a2w2A1, 
(3.18) 

3.3. More than two central charges 

This extra condition (3.5) generalises easily. For a finite number of components we take 

(3.19) 

(3.20) 

We then proceed as before, using (3.4) to rewrite (3.3) with a constrained vector, 
a traceless scalar tensor and several scalar singlets as in (3.8). 

If we consider one complex central charge along say a we get 

(a'+ iff 'a)hk = 0 = (#+ ia 'a*)hk 

and so ahk =a*&, i.e. a real. 

by using the chiral notation taking 
Hence we have to be more careful when we complexify (2.8). This can be done 

(3.21) a+ 1 1  ida- hack =ffk[aha-  

and taking the complex conjugate of this to define a?.  
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For a finite number of components we then need to apply the extra condition 

a2 = bC1 (3.22) 

but since we have from (3.21) that 

aa* = U (3.23) 

we get 

a* = ba (3.24) 

and so b = e-'" for some real 8. In other words a and a* are, in a sense, parallel (this 
is discussed more fully in Restuccia and Taylor (1983b)). 

We can then write 

a = eieal (3.25) 

with dl  real. This gives a: = 0 and we can rewrite (3.21) as 

ishk =a '(cos 8 + y 5  sin 8)alh (3.26) 

and we have for (3.3) 

= (d -ia 'al(cOs 0 -sin e y s ) ) ( X +  ia ' ' ~ ~ ~ + i y ~ ~ ~ ' ~ j , ) e ~  (3.27) 

A second complex central charge along a' would give us 

idAk = (cos e + y s  sin ~ ) ( a  'al + a 2 a 2 ) ~  (3.28) 

which, squared, gives a: + a: = 0. If, instead, for the second central charge, we had 
a different phase angle e', then this would not be the case and spin reduction would 
not work. With (3.28) we get 

6 A k  = (d-i(cos @-sin 6y5)(a 'al  +cu2az))(X+ia"Bi,+iy5p"Bj,)ek. (3.29) 

We then need to apply the conditions (3.5) to further ensure a finite number of 

In general we get the spin-reducing equation 
components. 

is& = (cos e + y 5  sin e)(a'a, + yspja;)Ak (3.30) 
with 

S A k  = (d - i(cos 8 -sin 8 ys)(a 'ai - y5p'aj))(X + ia ' ,Bit + iy 'p ' 'Bj . )~~.  

We then use (3.19) and (3.2G) to limit the number of components. 

(3.31) 

4. Superfield formulation 

When there are central charges present, the covariant derivatives Dt, Dsi satisfy the 
anticommutation relations 

{ob, D $ }  = 2?7,@Zii {Dh,Dkj}=2(P~)ac+Sj.  (4.1) 
On our superfield we can expect to be able to take 

.z$ = e -2 iez i i  
(4.2) 
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(4.4) 

From our knowledge of super-tableau calculus for one central charge (Rands and 
Taylor 1983) we can expect as our superfield 

4 i l i z  - E 
with 

(we will use E to raise and lower skew symmetric indices). This transforms as - 
(4.7) 

where this is traceless with respect to Ziti2. 
We have, as independent components 

V m a  =D,"Di4mn 
H 

$a, = D,"4mj 
B 

4 i l i z  

plus central charge derivatives. 
That (4.7) gives us the spin-reducing equation (3.28) follows from the identities 

Zmn4"' = -znr4,, (4.8) 

(4.9) ~ ( i ~ i ~ 4 i ~ ) I ~  = 0 

where Diiiz = tD!1Dai2) . Equation (4.9) gives us 
D'itiiZ. , 4 i ~ ) ~ 2  = 0 

I l l 2  (4.10) 

and together with (4.8) we can derive 

DimrPmi = 8Zim4mi. (4.1 1 )  

This is enough to give 

D,"4,i = ZinDkm4 mm (4.12) 

which is our spin-reducing equation (3.28). 
For more than one central charge conditions (3.19) and (3.20) need to be applied 

to the superfield but these are not needed for the single case. 
That we need conditions (3.9) and (3.20) explicitly can be seen by the initial 

transformation laws (3.8) and (3.10), and looking for constraints involving fewer 
powers of D, than the four required for (3.19) and (3.20). 

If we consider our superfield to be similar to any of the fields (3.9) we get the 
corresponding transformation law from (3.10) as the result of hitting the superfield 
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with FD(= E ’ D ~  + E ~ D , ) .  The action of two De’s then corresponds to equation (3.8) 
and three then gives us (3.10) plus all single central charge derivatives of (3.10). 

Hence we have, for example, 

SV, = 2iCy,.A SAl, =Sa,V, =2iBy,,alA SA2, =Sa2 V, = 2i&,.a2A. 
(4.13) 

If we were to define 

ialA =,AT (4.14) 

this gives us, using (2.8), 

SA 1, = 2 E ~ , t , d ~  SA2, = 2Ey,,d(a2h +crZa17). (4.15) 

Since we get similar terms for the scalars it is clear that up to and including the 
D 3  level the parameters a l ,  az need not enter and hence D4 conditions are needed 
to define them. 

5. Discussion 

We have constructed a representation of N = 4 SUSY which has a finite number of 
components but has two off-shell central charges along different directions in the 
central charge space. This representation may be of value in the construction of 
N = 4 - s ~ ~  or N = 4 - s ~ ~  as helping to avoid the N = 3 barrier. Indeed, if the results 
of an earlier analysis of N = 4 SGR is accepted (Taylor 198213) at least two such central 
charges are essential to bypass the N = 3 barrier. We cannot immediately ccnclude 
from this, however, that the multiplet we have presented will be satisfactory. It may 
be that two single off -shell central charges are needed on two independent multiplets, 
and that a total of six such multiplets, each with a central charge in a different direction, 
will be required. 

In order to determine the exact nature of the multiplets needed to be used as 
additional compensating multiplets, beyond those without central charges, we must 
determine suitable constraints on the torsions (for N-SGRS) or field strengths (for 
4-SYM). These constraints must at least produce the spin-reducing constraint (2.7). 
Since this is too weak to prevent multiplets with an infinite number of components 
from appearing, either a further condition of the form (3.5) or conditions giving the 
set of different multiplets with single central charges must be used. 

We would expect the corresponding geometric constraints to be those which allow 
the corresponding representation to be present (Gates 1979, Stelle and West 1979) 
in the full geometry. For the case of multiplets with single central charges this presents 
no difficulties, but the present multiplet might be more difficult to incorporate in such 
a geometric fashion. This is because the constraints on the superfield 4ij to single out 
this multiplet which depend on the constants a 1, a2 of (3.5) are fourth order in D:, D&,,  
not of first order as for the single central charge case. It will be interesting to see if 
an argument can be given proving that this geometrisation of our two-central charge 
multiplet is or is not possible. 

We conclude that our multiplet is of interest in its own right as possessing effectively 
two extra ‘times’ in a very non-trivial fashion, but that its value in bypassing the N = 3  
barrier is still uncertain. 
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